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Ups and Downs of Guided Vessel
Sprouting: The Role of Polarity

Blood vessel networks expand to meet oxygen demands via sprouting angio-

genesis. This process is heterogeneous but not random; as sprouts form and

extend, neighboring endothelial cells do not sprout but divide. Sprouting is

regulated by local sprout guidance cues produced by the vessels themselves,

as well as extrinsic cues. Endothelial cells in developing vessels orient in

several axes to establish migratory polarity, apical-basolateral polarity, and

planar cell polarity. Although little is known about how polarity axes are set up

or maintained, they are important for vessel formation and function. This

review focuses on the current knowledge of how blood vessel sprouting is

regulated and guided, the role of endothelial cell polarity in forming vessels,

and how these processes affect vessel function and are potentially perturbed

in pathologies with vascular components.
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Blood vessel networks form via de novo forma-
tion of vessels, and subsequent sprouting from
these vessels to form new conduits (see reviews
in Refs. 11, 16, 60). These processes require the
coordination of numerous cellular processes,
and the endothelial cells that comprise primitive
vessels proliferate, migrate, polarize, and fuse in
response to a set of molecular cues that are in-
tegrated in both space and time. These guidance
cues are produced by nearby tissues and the
vessels themselves, and they are found in the
local micro-environment. However, the individ-
ual endothelial cells of a target vessel often re-
spond differentially to these cues; in fact, this
heterogeneous response is a requirement for
proper vascular development (see reviews in
Refs. 2, 13, 40). Sprouting migration of endothe-
lial cells only produces new networks when some
endothelial cells respond to cues by migrating
and eventually fusing with other sprouts,
whereas nearby neighbors proliferate to provide
the building blocks for expansion.

Thus endothelial cells must know their posi-
tion in relation to neighbors in developing ves-
sels to provide the proper responses to guidance
cues. This is accomplished in part by cell-cell
communication that includes orienting along
several axes. Although first responses to cues
must be heterogeneous to set up sprouting, sub-
sequent responses and orientation as the sprout
forms a lumen, and eventually a conduit, are
more homogeneous. First, the endothelial cell
that responds to cues by migrating sets up a
migratory polarity that orients the cell to move

forward. Polarization of the tip cell, or leader
cell, in turn is predicted to signal adjacent cells
to adopt a follower, or stalk cell phenotype. As a
nascent sprout migrates outward, cells behind
the leading edge polarize along an apical-
basolateral axis (also called the luminal-abluminal
axis in a tube) to initiate the formation of a
lumen. Finally, endothelial cells in developing
vessels organize in the plane orthogonal to the
apical-basolateral axis, and polarity in this plane
is called planar cell polarity (PCP). This polariza-
tion takes the form of oriented cell divisions that
set up the cleavage plane perpendicular to the
vessel long axis and lengthen the vessel. Subse-
quently, blood flow provides a shear stress vector
that polarizes the endothelial cell cytoskeleton
relative to flow. All of these distinct orientations
require the coordination of endothelial cell re-
sponses to inputs.

This review discusses how blood vessel sprout-
ing is regulated, with a focus on the means by
which spatial orientation of endothelial cells in
developing vessels is accomplished to provide both
heterogeneous and homogeneous responses to en-
vironmental cues. We first assess how the events of
sprouting migration are set up, and how nascent
vessels interpret signals. We discuss some of the
guidance cues that are known to regulate sprout-
ing, including VEGF and Notch. We next describe
how endothelial cells set up their spatial orientation
via polarization at several different levels. Finally, we
discuss how these important developmental re-
sponses of endothelial cells impact blood vessel
function and are potentially misregulated in disease.
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Guided Vessel Sprouting

Initially, a single endothelial cell, termed a “tip
cell,” initiates a new sprout by migrating outward
in response to angiogenic growth factors (27). It is
not known how the tip cell is initially specified,
but, once specified, the tip cell upregulates several
markers, including the Notch ligand Dll4, endothelial-
specific molecule 1, angiopoietin 2, the chemokine
receptor CXCR4, and others (18, 32, 71). At the
same time, adjacent cells adopt a “stalk cell” phe-
notype, likely in response to Notch signaling in-
duced by Dll4.

VEGF is a strong and predominant vessel sprout
guidance system (see reviews in Refs. 24, 57) (see
FIGURE 1). A major cue is provided by the ligand
VEGF-A, which is produced by tissues and organs
as they form and grow, often in response to oxygen
demands. VEGF-A binds two high-affinity endo-
thelial cell receptors expressed in nascent vessels,
VEGFR-2 (Flk-1 in mouse) and VEGFR-1 (Flt-1 in
mouse). These are tyrosine kinase family receptors,
with an extracellular domain that binds ligand,
a transmembrane domain, and a cytoplasmic
domain that, upon ligand binding and dimeriza-
tion, stimulates signaling via numerous down-
stream effector pathways. Binding of VEGF-A to
VEGFR-2/Flk-1 stimulates endothelial cell prolifer-
ation, migration, and survival, and also modulates
the stability of cell-cell adhesions. Genetic loss of
either VEGF-A or VEGFR-2/Flk-1 is embryonic le-
thal due to insufficient blood vessel formation (12,
23, 66). Genetic loss of VEGFR-1/Flt-1 also leads to
embryonic lethality; however, rather than insuffi-
cient vessel formation, the embryonic vessels over-
grow and become disrupted (25). This phenotype
suggests that Flt-1 negatively modulates VEGF sig-
naling. The finding that loss of Flt-1 signaling ca-
pacity via deletion of the cytoplasmic domain does
not perturb vascular development (33), along with
identification of a naturally occurring soluble ver-
sion of Flt-1 (sFlt-1) that is generated via alterna-
tive splicing and secreted (44), suggested that Flt-1
may act as a competitive inhibitor to modulate
signaling through Flk-1. This was confirmed at the
molecular level (43, 61). Moreover, sFlt-1 selec-
tively and positively affects branching morphogen-
esis in developing vessels, whereas both isoforms
negatively modulate endothelial division rate (14,
43, 48). A model explaining this data posits that
localized expression of sFlt-1 by developing vessels
spatially modulates VEGF-A ligand accessibility such
that emerging sprouts utilize a ligand corridor to
move efficiently away from the parent vessel and
thus enhance productive sprouting and branching (14).

An additional component of VEGF signaling
that is important for guided vessel sprouting is

VEGFR-3 (Flt-4 in mouse), although how it affects
vessel sprouting is not entirely clear. The VEGFR-3
ligand VEGF-C influences angiogenesis, presum-
ably through interactions with VEGFR-2 (51), and
VEGF-D is not required for proper vessel develop-
ment (reviewed in Ref. 50). However, VEGFR-3 ap-
pears to be important in blood vessel sprouting,
since genetic loss of function is embryonic lethal
with vascular defects, and receptor blockade sup-
presses angiogenic sprouting in the postnatal ret-
ina (19, 75).

These and other guidance cues are likely inter-
preted by nascent vessels in the context of the
status of Notch signaling (see reviews in Refs. 29,
34, 35, 40, 59, 62, 67, 68). Although the precise ways
in which Notch signaling intersects VEGF signaling
are a current focus of research, a model for which
much of the data is consistent suggests that the
initial VEGF signal leads to upregulation of the
Notch ligand Dll4 in the nascent tip cell (see
FIGURE 2A), perhaps via integrin engagement (20).
How this particular endothelial cell is chosen to
become the tip cell is not clear, but it may have
higher levels of VEGFR-2 and thus respond more

FIGURE 1. Components of the VEGF signaling pathway
Diagram shows the ligands (top), receptors, and co-receptors that are primarily in-
volved in VEGF signaling in endothelial cells.
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robustly to the VEGF signal. Nevertheless, the
upregulation of Dll4 leads to elevated Notch sig-
naling in neighboring cells, which has several con-
sequences. Notch upregulates VEGFR-1/Flt-1 and
perhaps downregulates VEGFR-2 and R3 receptors.
These molecular changes, and perhaps others, lead
the endothelial cells with elevated Notch signaling
to adopt a stalk cell phenotype that is character-
ized by a proliferation response to VEGF signaling.
These changes also allow the cells adjacent to the
emerging sprout to inactivate near-field VEGF-A
ligand and provide guidance cues via secretion of
sFlt-1 (FIGURE 2A).

Once a sprout leaves the near-field environment,
where environmental signals are interpreted by the
parent vessel and the emerging sprout, it continues
to respond to environmental cues, but the cues
and the responses are less well understood. It
appears that the levels of VEGF signaling per-
ceived by endothelial cells and interpreted via
Notch are still important, and cells with higher
VEGF signaling assume the tip cell position at
higher frequency than their neighbors with lower
VEGF signaling (41). Interestingly, recent evi-
dence from the mouse embryonic hindbrain and
developing retinal vasculature indicates that tis-
sue macrophages may physically bridge neighbor-
ing sprouts while they are anastomosing (22). Finally,
in a process that is poorly understood, a sprout con-
tacts and fuses with another sprout or vessel, and

formation of a lumen provides a new conduit for
delivery of oxygenated blood. Using computational
simulations, Bentley et al. predicted that the forma-
tion of new cell-cell junctions by sprout fusion dis-
rupts Dll4/Notch-mediated tip/stalk cell patterns,
causing the fusing tip cells to become inhibited for
further sprouting, whereas neighboring stalk cells
are predicted to reverse phenotypes and become tip
cells (8).

Polarity and Initiation of
Vessel Sprouting

Endothelial cell polarity is a key feature of angio-
genic sprouting; however, the profound cellular
remodeling events that must occur as vessels
sprout and form new conduits are only beginning
to be understood. Once the tip cell is specified, it
reorganizes its cytoskeleton to become polarized
for migration by extending numerous lamellipodia
and filopodia at the leading front, and it lacks a
vessel lumen (27, 32, 74) (FIGURE 2B). In contrast,
the stalk cells following behind as the sprout ex-
tends are proliferative, adopt apical-basal polarity,
and establish a lumen (17). The stalk cells are also
relatively devoid of filopodia, downregulate ex-
pression of matrix metalloproteinases, express the
apical marker podocalyxin, and secrete collagen IV
basally (49, 65, 79) (FIGURE 2B).

FIGURE 2. Guided blood vessel sprouting: signaling and polarity
A: diagram of a vessel sprout illustrating major signaling axes (see text for details). B: diagram of a vessel sprout showing migratory and apical-
basolateral polarization (see text for details).
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Polarity and Migratory Tip Cells

Endothelial cell filopodia play a crucial role in the
polarized migration of tip cells by sensing and re-
sponding to guidance cues (27, 64). Retinal vessels
treated with exogenous VEGF-A and vessels of
VEGF120/120 mice that presumably do not form in
a VEGF gradient exhibit a loss of migratory polar-
ity, and ectopic filopodia extend in random direc-
tions from both tip and stalk cells (14, 27).
Substantial evidence in other cell types suggests
that this phenotype results from perturbed down-
stream signaling through the small GTPases Rac1,
Cdc42, and RhoA, which regulate cytoskeleton dy-
namics, cell polarity, and focal adhesions (re-
viewed in Ref. 10). In addition, tip cell number and
filopodia density on endothelial cells are regulated
by Dll4/Notch1 signaling (32, 74). This may be in
part due to cross talk with the VEGF pathway, but
it is unclear whether Dll4/Notch1 signaling also
interacts with the cytoskeleton independent of
VEGF to induce the tip cell phenotype.

Polarized migration of endothelial and other cell
types requires proper orientation of the Golgi appa-
ratus and the microtubule organizing center (MTOC)
(28, 56). More recently, the membrane-associated
proteins, angiomotin and angiomotin-like protein-1,
were localized to endothelial lamellipodia and tight
junctions, respectively. These proteins influenced
formation of filopodial extensions, positioning of the
Golgi apparatus, and the stability of cell-cell junc-
tions (1, 82). Furthermore, Matsumoto and colleagues
showed that localization of ninein, a centrosomal
microtubule-anchoring protein, changes in devel-
oping vessels. Ninein is largely localized at the
centrosome in the base and stalk cells, whereas it is
abundantly expressed in the cytoplasm of migrat-
ing tip cells (53). It is proposed that its release from
the centrosome allows for microtubule reorganiza-
tion that is required for forward movement of the
tip cell.

Meanwhile, the rear of the tip cell must maintain
contact with and exert pulling forces on stalk cells to
prevent branch disintegration. Another protein that
may be involved is caveolin-1, a major component of
endothelial cell surface caveolae. Caveolin-1 protein
concentrates at the trailing end of aortic endothe-
lial cells induced to migrate by chemotaxis or
chemokinesis (7, 38), where it may participate in
focal adhesion disassembly that is required for for-
ward movement (see reviews in Refs. 9, 26). Beard-
sley et al. noted an absence of lamellipodia at sites
of caveolin-1 polarization and also found that loss
of caveolin-1 prevented cell migration. However,
there appear to be complex mechanisms driving
caveolin-1 polarization that depend on its phos-
phorylation state and the migration mode (7, 58). It

is still unclear how downstream signaling through
VEGF coordinates these rapid and dynamic polar-
ization events.

Polarity in Sprout Fusion and
Lumen Formation

Following tip-cell selection and migration, sprouts
from different vessel segments meet and subse-
quently fuse, or anastomose, to form a functional
vessel connection. Although we currently have a poor
understanding of the overall process, particularly in
regard to how a sprout determines its target for fu-
sion, it is likely to also be regulated by guidance cues
and polarity changes, similar to vessel sprouting.

Finally, the developing vessels must generate a
lumen and connect to the circulation. Studying
this process has been relatively difficult due to the
lack of appropriate models; however, our under-
standing is quickly expanding by recent studies
using three-dimensional extracellular matrices in
combination with in vivo data. Studies thus far
suggest that lumen formation is governed by dif-
ferent processes depending on the specific vessel
bed, with the two main mechanisms being cell
hollowing and cord hollowing (reviewed in Ref.
37). Briefly, cell hollowing involves the generation
and coalescence of intracellular vacuoles of indi-
vidual cells, which then interconnect with neigh-
bors to form a multicellular lumen. In vitro studies
show that this process involves the small GTPases
Rho, Rac, and cdc42 (5, 6). In contrast, cord hol-
lowing involves a cord of packed cells undergoing
dramatic cell shape changes to create a lumen
(FIGURE 3). For either process to occur, the estab-
lishment of apical-basal polarity is essential.

The complex composed of the Par proteins, Par3
and Par6, and atypical protein kinase C (aPKC) is
crucial for apical-basal polarity in numerous cell
types and organisms (reviewed in Ref. 21). Iden et
al. showed that, in cultured endothelial cells, the
Par complex physically associates with adherens
junctions (36). It was later discovered that this
interaction is needed for activation of the small
GTPase Cdc42 and aPKC activity, which are crucial
for proper vessel formation (47, 49). Indeed, dis-
rupting any member of the Par3-Par6-aPKC com-
plex in vitro leads to defective endothelial polarity
and vessel lumenization (47). In vitro studies also
show that polarized Cdc42/Par6/aPKC activity is
required for flow-dependent reorientation of the
MTOC, suggesting another method by which blood
flow contributes to vessel polarization (76).

Strilic and colleagues showed that, in the devel-
oping mouse aorta, endothelial cells first adhere to
each other (FIGURE 3). CD34-sialomucins are next lo-
calized to internal cell-cell contacts in a VE-cadherin-
dependent manner. Moesin and F-actin are
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subsequently recruited to these contacts, thus
defining the apical surface. VEGF signaling then
enables F-actin and non-muscle myosin II inter-
actions to induce cell shape changes and initiate
lumen formation (72). In addition, the negative
charge of apical glycoproteins on opposing endo-
thelial cell surfaces generates repelling electro-
static forces that also contribute to lumen
expansion (73). Another report indicates that VE-
cadherin, with CCM1 and Rap1, is also required for
localized activation of the Par complex and orga-
nization of adherens junctions (49). Furthermore,
�1-integrin-null endothelial cells lose their charac-
teristic squamous shape, mislocalize the polarity
determinant Par3 and cell-cell adhesion mole-
cules, and display luminal occlusion (83). Ras in-
teracting protein 1 (Rasip1) was recently identified as
a vascular-specific regulator of Rho GTPase signal-
ing, and, interestingly, mice lacking Rasip1 failed to
form lumens in all blood vessels (78). The primary
defects included excessive actomyosin contractil-
ity, failure of Par3 and junctional proteins to redis-
tribute to the periphery, and loss of integrin
adhesion to the surrounding extracellular matrix.
Taken together, these findings suggest that a num-
ber of distinct determinants are essential for
proper polarization and lumen formation, but we
still do not fully understand how these factors interact

to coordinate cell polarization for lumen formation
during vascular development.

Planar Cell Polarity in
Angiogenesis

In contrast to the well established importance of
Wnt/�-catenin signaling in angiogenesis, the role of
the noncanonical Wnt/planar cell polarity pathway
that regulates Rho, Rac, and JNK is poorly under-
stood. Planar cell polarity (PCP) describes the coor-
dinated polarization of cells within the plane of an
epithelial sheet that is perpendicular to the apical-
basal axis and commonly involves asymmetric local-
ization of protein complexes within individual cells
(3). Well studied examples of PCP include the precise
arrangement of bristles on the fly wing and the uni-
form orientation of stereocilia in the sensory hair
cells of the mouse cochlea. Further vertebrate studies
have provided evidence of PCP regulation in a variety
of developmental contexts, including cellular pro-
cesses such as directed migration, cell division ori-
entation, and tissue morphogenesis (for detailed
reviews, see Refs. 69, 77, 80).

It is thus tempting to speculate that PCP signaling
may coordinate at least some of the necessary cell
polarity information between neighboring cells that
is required for the complex processes of angiogenesis.

FIGURE 3. Cord hollowing mechanism of vessel lumen formation requires vessel polarity
A: at early stages of lumen formation, junctional and Par proteins are uniformly expressed on the endothelial cell surface. B: at later stages of lu-
men formation, junctional and Par3 proteins are excluded from the apical membrane, sialomucins lead the apical surfaces to repel each other, and
actomyosin contractility induces shape changes that extend the lumen diameter.
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For example, developing blood vessels display ori-
ented endothelial cell division that is regulated in a
flow-independent manner (81). Moreover, the term
PCP has been used to describe the fluid shear stress-
induced phenotypes of cultured vascular endothe-
lium, which include the reorganization of actin stress
fibers, the redistribution of junctional complexes,
and the reorientation of the MTOC on the down-
stream side of the nucleus (55). In vivo evidence is
less clear, however, because studies have suggested
that endothelial microtubule polarity is either cardio-
centric (upstream in arteries and downstream in
veins) or differs with vessel age and identity (46, 55, 63).

Using cell culture assays, Cirone et al. (15)
recently showed that selective inhibition of
�-catenin-independent Wnt signaling by either the
anti-angiogenic drug TNP-470 or a �DIX-Dvl2 mu-
tant resulted in disrupted endothelial cell growth,
polarity (defined by caveolin-1 localization), and
cell migration. Interestingly, activation of the PCP
downstream effectors Daam-1, Diversin, or Inver-
sin rescued all these phenotypes (15). It was also
found that overactivation of Daam-1 selectively in-
hibited endothelial cell proliferation by regulating
microtubule assembly and stabilization and re-
sulted in impaired migration and vessel network
formation (42). Furthermore, Wnt5-deficient ze-
brafish with impaired noncanonical Wnt signal-
ing display gross morphological vascular defects,
including defective intersegmental and cranial
vessels (15).

These findings provide support for PCP-dependent
regulation of microtubule and other cytoskeletal
elements in endothelial cells, but additional stud-
ies are needed to further elucidate the roles and
mechanisms of PCP in endothelial cell polarity and
blood vessel morphogenesis. For example, present
studies have not yet investigated endothelial cell
functions of unique PCP proteins, such as Vangl2
or Prickle. Other open questions include: What is
the spatiotemporal significance of PCP regulation
in vascular development? Are there specific defects
resulting from perturbed vascular PCP signaling,
and, if so, what mechanisms are affected? It will
also be interesting to gain further understanding of
the potential cross talk between these polarity
complexes (both Par and PCP) and the better un-
derstood VEGF and Dll4-Notch signaling pathways
in coordinating angiogenesis.

Guided Vessel Sprouting:
Implications for Disease
and Conclusions

Sprouts must be formed, guided, and the proper
polarity programs initiated to make a functional
vessel network that efficiently delivers oxygen and
nutrients to tissues. Here, we highlight a few of the

many instances where aberrant vessel formation
and/or function are an integral part of the pathol-
ogy of disease.

Diabetes is characterized by perturbed vessel
function, and the retinal vasculature of the eye is
particularly susceptible to the perturbed metabo-
lism seen in diabetic individuals (reviewed in Refs.
52, 70). Diabetic retinopathy is associated with the
overgrowth and dysmorphogenesis of retinal ves-
sels, sometimes even leading to blindness. In dia-
betic animals, the retinal vessels are leaky with
reduced barrier function, and they have a tortuous
morphology. These initial defects lead to vessel
overgrowth via mechanisms that are not well un-
derstood but are thought to involve VEGF signal-
ing. Overgrown vessels in a rodent model have
randomized endothelial cell divisions (31), sug-
gesting that these defects are accompanied by per-
turbed vessel polarity. It will be interesting to see
whether this is the case and whether polarity can
be restored downstream of the initial input.

Solid tumors develop in the context of blood
vessels recruited from adjacent tissues (reviews in
Refs. 30, 45). Although the vessels that enter tu-
mors are normal, once in the tumor environment
the vessels become abnormal in several ways. They
are leaky and tortuous, they do not recruit peri-
cytes efficiently, and they are poor at relieving the
hypoxia of the tumor environment. This inability
to relieve hypoxia maintains high levels of several
growth factors, including VEGF, and this is thought
to further exacerbate the tumor vessel phenotype
(39). In fact, when hypoxic signaling is short-
circuited genetically, tumor vessels “normalize”
and tumors are less metastatic (54). Scanning elec-
tron micrographs of the luminal (apical) surface of
tumor vessels show that endothelial cells have pro-
trusions and overlap with other cells that are not
seen in vessels from normal tissues (4). Tumor
vessels have a luminal surface, but other aspects of
polarity have not been directly assessed, so it is
tempting to speculate that the phenotype and re-
duced function of tumor vessels are associated
with aberrant polarity of tumor endothelial cells.
Although any polarity defects would likely be
downstream of excess signaling in the tumor envi-
ronment, it may be that restoration of endothelial
cell polarity would act to normalize tumor vessels.

We now realize that blood vessel formation is
organized at many levels, and we have some un-
derstanding of both the extrinsic and intrinsic mo-
lecular cues that regulate this process. Extrinsic
signals such as VEGF are interpreted by endothelial
cells in complex ways that depend on the behav-
iors of neighboring cells and lead to heterogene-
ous but integrated responses. A soluble form of
VEGFR-1 is produced intrinsically but is secreted
to provide guidance cues to nearby sprouts.
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Finally, endothelial cells in developing vessels ex-
hibit polarity in several axes, also likely as a result
of both intrinsic and extrinsic cues. Some of these
polarities, such as migratory polarity, are set up
heterogeneously, whereas others, such as apical-
basolateral polarity, are set up homogeneously by
groups of cells in vessels. The next several years are
sure to reveal important new mechanisms whereby
these behaviors are set up and integrated, and
perhaps new molecular players that are involved.
Both extrinsic and intrinsic mechanisms are po-
tential therapeutic targets. �
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