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    Introduction 
 Angiogenesis is of critical importance to blood vessel formation 

in developing embryos and in physiological and pathological 

conditions (for reviews see  Risau, 1997; Coultas et al., 2005 ). 

During angiogenesis, endothelial cells respond to both prolifer-

ative signals and morphogenetic cues to extend simple vascular 

structures and form and expand a branching plexus. Although 

several signaling pathways important in angiogenesis have been 

identifi ed, relatively little is known about how these signals are 

regulated to coordinate vessel branching and endothelial cell 

proliferation. 

 The VEGF-A signaling pathway is a crucial mediator of endo-

thelial cell division and migration during angiogenesis (for reviews 

see  Kowanetz and Ferrara, 2006 ;  Shibuya and Claesson-Welsh, 

2006 ). The VEGF-A pathway requires tight dose-dependent 

regulation for proper blood vessel formation because minor 

changes in the amount of VEGF-A adversely affect vascular 

development, and the loss of even one copy of the  vegfa  gene 

leads to embryonic lethality ( Carmeliet et al., 1996 ;  Ferrara et al., 

1996 ;  Bautch et al., 2000 ;  Miquerol et al., 2000 ). VEGF-A sig-

naling is modulated by alternative splicing of VEGF-A RNA 

to produce three major isoforms ( Tischer et al., 1991 ). These 

VEGF-A isoforms have differing affi nities for heparin that 

are predicted to lead to differential distribution from VEGF-A –

 producing cells, and genetic manipulation of these isoforms 

leads to vessel dysmorphogenesis ( Ruhrberg et al., 2002 ; 

 Stalmans et al., 2002 ). Recent studies by  Gerhardt et al. (2003)  

support a model in which the spatial context of VEGF-A ligand 

presentation to the endothelial cell is important for vessel mor-

phogenesis, whereas endothelial cell proliferation is regulated 

by the local VEGF-A concentration in a spatially indepen-

dent manner. 

 The biological effects of VEGF-A are mediated by two 

high affi nity receptor tyrosine kinases expressed on endothe-

lial cells: fl k-1 (VEGFR-2) and fl t-1 (VEGFR-1). VEGF-A 

signaling through fl k-1 positively regulates endothelial cell di-

vision and migration, whereas the function of fl t-1 is less clear 

(for reviews see  Rahimi, 2006 ;  Shibuya, 2006 ). Deletion of 
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lood vessel formation requires the integrated regu-

lation of endothelial cell proliferation and branch-

ing morphogenesis, but how this coordinated 

regulation is achieved is not well understood. Flt-1 (vas-

cular endothelial growth factor [VEGF] receptor 1) is a 

high affi nity VEGF-A receptor whose loss leads to vessel 

overgrowth and dysmorphogenesis. We examined the 

ability of Flt-1 isoform transgenes to rescue the vascular 

development of embryonic stem cell – derived  fl t-1  � / �    mu-

tant vessels. Endothelial proliferation was equivalently 

rescued by both soluble (sFlt-1) and membrane-tethered 

(mFlt-1) isoforms, but only sFlt-1 rescued vessel branching. 

Flk-1 Tyr-1173 phosphorylation was increased in  fl t-1  � / �    

mutant vessels and partially rescued by the Flt-1 isoform 

transgenes. sFlt-1 – rescued vessels exhibited more hetero-

geneous levels of pFlk than did mFlt-1 – rescued vessels, 

and reporter gene expression from the  fl t-1  locus was 

also heterogeneous in developing vessels. Our data sup-

port a model whereby sFlt-1 protein is more effi cient than 

mFlt-1 at amplifying initial expression differences, and 

these amplifi ed differences set up local discontinuities in 

VEGF-A ligand availability that are important for proper 

vessel branching.

 The VEGF receptor Flt-1 spatially modulates Flk-1 
signaling and blood vessel branching 
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We found soluble Flt-1 to be highly effective at rescuing branch-

ing morphogenesis relative to membrane-bound Flt-1, whereas 

both membrane-tethered and soluble Flt-1 rescued endothelial 

cell proliferation equivalently. Moreover, expression from the 

 fl t-1  locus was heterogeneous in developing vessels, and the 

level of Flk-1 phosphorylation on individual endothelial cells in 

developing vessels was more heterogeneous in sFlt-1 – rescued 

vessels than in mFlt-1 – rescued vessels, suggesting that sFlt-

regulated spatial discontinuities in Flk-1 signaling derived from 

heterogeneous  fl t-1  locus expression are required for proper 

branching morphogenesis. Our results support a model in which 

VEGF-A ligand presentation is modulated by Flt-1 isoform 

production in the target endothelial cells to ensure proper 

vessel morphogenesis. 

 Results 
 Both fl t-1 isoforms are expressed in 
developing blood vessels 
 To determine the relative expression levels of Flt-1 (VEGFR-1) 

isoforms during vascular development, we used real-time PCR 

with isoform-specifi c primers for sFlt-1 or mFlt-1 ( Fig. 1 ; 

 Hazarika et al., 2007 ). This analysis showed that, as expected, 

the expression levels of both isoforms were increased over the 

time course of development of ES cell – derived vessels ( Fig. 1 A ). 

Moreover, comparison showed that the relative proportions of 

each isoform were roughly equivalent and that the relative pro-

portions did not signifi cantly change during the time course of 

differentiation ( Fig. 1 B ). These data indicate that both sFlt-1 

and mFlt-1 are expressed during vascular development and pro-

vide a rationale for investigating the effects of each isoform on 

vascular development. 

 Transgenes encoding individual Flt-1 
isoforms targeted into the ROSA26 locus 
rescue the  fl t-1  � / �    vessel phenotype 
 ES cell – derived vessels lacking both Flt-1 isoforms have an in-

creased endothelial cell mitotic index ( Kearney et al., 2002 ) 

and a morphogenetic defect that results in reduced sprouting 

and branch formation ( Kearney et al., 2004 ). To directly assess 

the role of the soluble (sFlt-1) and membrane-bound (mFlt-1) 

Flt-1 isoforms on endothelial cell division and vessel morpho-

genesis, we targeted sFlt-1 and mFlt-1 isoform transgenes linked 

to the platelet endothelial cell adhesion molecule (PECAM) 

promoter/enhancer into the  ROSA26  genomic locus of  fl t-1  � / �    
ES cells ( Fig. 2 ). Transgenes targeted to the  ROSA26  locus of 

ES cells are present as a single copy rather than long concata-

mers, and they have uniform expression levels ( Soriano, 1999 ; 

 Srinivas et al., 2001 ). This strategy allowed for the direct com-

parison of rescue properties of the sFlt-1 and mFlt-1 isoform 

transgenes. The transgenes were linked to the PECAM pro-

moter/enhancer because this regulatory region results in the 

expression of transgenes in developing blood vessels ( Kearney 

et al., 2004 ). After electroporation of the targeting constructs, 

drug-resistant  fl t-1  � / �    ES colonies were selected, and correct 

targeting by homologous recombination was confi rmed by PCR 

(unpublished data). 

 fl t-1  in mice results in embryonic lethality at midgestation 

with vascular defects, and deletion of  fl t-1  in mouse embry-

onic stem (ES) cell – derived vessels leads to the overprolifera-

tion of endothelial cells and dysmorphogenesis of vessels 

( Fong et al., 1995 ;  Kearney et al., 2002, 2004 ). Flt-1 mRNA is 

alternatively spliced to encode both a full-length receptor ty-

rosine kinase (mFlt-1) and a soluble isoform (sFlt-1) that con-

tains the VEGF-A – binding extracellular domain ( Kendall and 

Thomas, 1993 ). VEGF-A has a higher affi nity for Flt-1 than 

for Flk-1, so both Flt-1 isoforms can potentially sequester 

VEGF-A and modulate signaling through Flk-1.  Flt-1  � / �    ES 

cell – derived vessels have approximately threefold higher lev-

els of activated Flk-1 than do normal vessels as measured by 

overall levels of tyrosine phosphorylation, which is consistent 

with a role for Flt-1 in ligand sequestration during develop-

ment ( Roberts et al., 2004 ). Moreover, mice lacking the cyto-

plasmic tail of the Flt-1 receptor are viable, indicating that the 

signaling function of Flt-1 is not essential during embryonic 

development ( Hiratsuka et al., 1998 ). Collectively, these data 

suggest that Flt-1 functions in vascular development as a li-

gand sink to bind and sequester VEGF-A, and in this way Flt-1 

regulates signaling through the Flk-1 receptor. However, how 

the two Flt-1 isoforms contribute to this regulation has not 

been elucidated. 

 We hypothesized that the Flt-1 isoforms have differential 

effects on endothelial proliferation and branching morphogene-

sis in developing vessels. To test this hypothesis, we reintro-

duced isoform-specifi c Flt-1 transgenes into  fl t-1  � / �    vessels. 

 Figure 1.    Flt-1 isoform expression during a developmental time course.  
WT ES cell cultures were used (day 0) or differentiated for the indicated 
number of days, and total RNA was isolated for real-time PCR analysis. 
(A) The relative copy number of sFlt-1 or mFlt-1 RNAs were calculated rela-
tive to 18S RNA. (B) The ratio of sFlt-1/mFlt-1 RNA over time. Error bars 
represent SEM.   
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et al., 2002 ). Compared with controls (wild-type [WT] mean = 

16.5%;  fl t-1  � / �    mean = 53.4%), all rescue clones partially rescued 

vessel area (sFlt rescue mean = 24.2%; mFlt rescue mean = 

24.1%), and no consistent differences were seen between the 

groups of sFlt-1 and mFlt-1 rescue clones ( Fig. 4 A ). In con-

trast, analysis of vessel morphogenesis by branch point analysis 

showed that compared with controls (WT mean = 12.6 branches/

millimeter;  fl t-1  � / �    mean = 7.8 branches/millimeter), sFlt-1 rescue 

clones signifi cantly rescued branching (sFlt rescue mean = 

9.8 branches/millimeter), whereas the group of mFlt-1 res-

cue clones did not signifi cantly rescue branching (mFlt rescue 

mean = 8.2 branches/millimeter;  Fig. 4 B ). Thus, the  ROSA26  

locus – targeted clones exhibited differential rescue effects on 

the  fl t-1  � / �    mutant vessels; vessel area was equivalently rescued 

by both Flt-1 isoforms, whereas vessel morphogenesis was only 

rescued by the sFlt-1 isoform. 

 To further verify that the changes in vessel area refl ected 

the rescue of endothelial proliferation, we analyzed a subset of 

each group of Flt-1 isoform rescue clones for two additional pa-

rameters. We performed FACS analysis for an independent 

endothelial marker, ICAM-2, and found a similar pattern in that 

all analyzed Flt-1 rescue clones had endothelial cell numbers 

that were intermediate between Flt-1 mutant vessels and WT 

vessels (Fig. S1, available at http://www.jcb.org/cgi/content/full/

jcb.200709114/DC1). Next, we calculated the endothelial mi-

totic index for the same subset of rescue clones and found that 

all Flt-1 isoform rescue clones had endothelial mitotic indices at 

or near that of WT vessels and signifi cantly different from that 

of  fl t-1  � / �    mutant vessels ( Fig. 5 ). Thus, all Flt-1 isoform rescue 

clones had a partial rescue of vessel area, the number of endo-

thelial cells, and the endothelial mitotic index relative to  fl t-1  � / �    

 From a group of 10 – 15 rescue clones with each isoform, we 

selected four clones each of the ROSA26sFlt-1 and ROSA26mFlt-1 

genotype for further analysis. These  fl t-1  � / �    ;Tg PECAM-flt-1ROSA  

ES cell clones were differentiated to day 8, and the expression 

of individual Flt-1 isoform transgenes was verifi ed by RT-PCR, 

showing little heterogeneity in expression levels from the 

 ROSA26  locus ( Fig. 2 C ). The differentiated cultures were also 

labeled with PECAM antibody to visualize developing blood 

vessels ( Fig. 3 ). Compared with  fl t-1  � / �    cultures, all Flt-1 iso-

form transgene clones showed a partial rescue of vascular develop-

ment ( Fig. 3,  compare A and B with C – J). The rescue clones 

had fewer areas of overt vessel dysmorphogenesis and endo-

thelial sheets and more areas of branching. Thus, targeting of 

PECAM promoter/enhancer-driven Flt-1 isoform transgenes 

to the ROSA26 genomic locus leads to rescue of the  fl t-1  � / �    
mutant vessel phenotype. 

 Isoform-specifi c differences in rescue 
phenotypes of Flt-1 transgenes 
 Close visual inspection of the Flt-1 isoform transgene rescue 

clones suggested isoform-specifi c differences in the rescue phe-

notypes ( Fig. 3 ). Specifi cally, although the rescue of vessel area 

appeared similar in all clones, the group of sFlt-1 isoform rescue 

clones had a rescue of branching morphogenesis that was not 

seen in the mFlt-1 isoform rescue clones ( Fig. 3,  compare C – F 

with G – J). To quantify the Flt-1 isoform rescue phenotypes, 

PECAM-stained cultures were analyzed for the percentage of 

vessel area, as measured by the PECAM-positive area relative 

to the total cellular area of the culture ( Fig. 4 A ). We previously 

showed that this parameter refl ects the endothelial mitotic index 

and is thus a measure of endothelial cell proliferation ( Kearney 

 Figure 2.     ROSA26  locus – targeted Flt-1 iso-
form rescue clones.  (A) Flt-1 isoform transgene 
 ROSA26  targeting. (top) Restriction map of the 
 ROSA26  locus. (middle) pROSA26-1 – contain-
ing insertion cassette of PECAM promoter/
enhancer, Flt-1 isoform, and a hygromycin B 
selectable marker with PGK – diptheria toxin A 
cassette for negative selection. (bottom) Pre-
dicted structure of the  ROSA26  locus after in-
tegration of the pROSA26-1 insertion cassette 
in  fl t-1  � / �    ES cells. Arrows denote primers used 
to verify correct targeting into  fl t-1  � / �    ES cells 
(not depicted). (B) Diagram of individual Flt-1 
isoforms. Soluble Flt-1 (sFlt-1) and membrane-
localized Flt-1 (mFlt-1) each contain an extra-
cellular VEGF-A – binding domain consisting of 
Ig domains (gray circles). Only mFlt-1 contains 
a transmembrane domain region (TM) and a 
tyrosine kinase domain. (C) Total RNA was iso-
lated from differentiated day 8 wild-type (WT), 
 fl t-1  � / �   ,  fl t-1  � / �    ;Tg ROSA-PECAM-sfl t-1 , and  fl t-1  � / �    ;Tg 

ROSA-PECAM-mfl t-1  cultures and analyzed by semi-
quantitative RT-PCR using  fl t-1  primers.   
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Flk-1 Tyr-1173 (equivalent to Tyr-1175 in VEGFR-2;  Fig. 6 ) 

because this tyrosine is essential for blood vessel formation and 

embryonic viability ( Sakurai et al., 2005 ). Analysis of the level 

of Flk-1 Tyr-1173 phosphorylation (pFlk) relative to total Flk-1 

by Western blotting showed the expected increase in the ratio 

for the Flt-1 mutant culture, and the ROSA locus – targeted Flt-1 

isoform rescue clones had ratios largely intermediate between 

mutant and WT cultures ( Fig. 6, A and B ). 

 Differentiated ES cell cultures were double stained for 

total Flk-1 and pFlk and examined by confocal microscopy 

( Fig. 7 ). The Flk-1 – positive cells were scored as being positive 

or negative for pFlk ( Fig. 7, A and B ). Consistent with the 

results of the Western blot, the confocal analysis showed that 

a higher proportion of Flk-1 – expressing cells were positive 

for pFlk in  fl t-1  � / �    mutant vessels (30%) compared with WT 

vessels (17%), and the  ROSA26  locus – targeted Flt-1 isoform 

mutant cultures, showing that all  ROSA26  locus – targeted rescue 

clones partially rescue endothelial cell proliferation. 

 Flt-1 isoform transgenes modulate 
signaling through the Flk-1 receptor 
 Tyrosine phosphorylation of the Flk-1 receptor is increased in 

the absence of Flt-1, consistent with a model in which Flt-1 

normally negatively modulates signaling through Flk-1 ( Roberts 

et al., 2004 ). To determine how the Flt-1 isoforms affected sig-

naling through Flk-1, we assayed specifi c phosphorylation at 

 Figure 3.     ROSA26 -targeted Flt-1 isoforms rescue  fl t-1  � / �    mutant ves-
sel dysmorphogenesis.  Day 8 differentiated ES cultures were stained for 
PECAM. All transgenic clones partially rescued the vessel dysmorphogen-
esis of  fl t-1  � / �    vessels (B). Note that targeted sFlt-1 transgene  ROSA26  
clones (C – F) appear to have more branched vessels than do targeted mFlt-1 
transgene  ROSA26  clones (G – J). Clone numbers are indicated in the top 
right of each frame. Bar, 200  μ m.   

 Figure 4.     ROSA26 -targeted Flt-1 isoforms differentially rescue  fl t-1  � / �    
mutant vessel parameters.  (A and B) Day 8 differentiated ES cell cultures 
were reacted with the PECAM antibody, and representative areas were 
analyzed for vessel area (A) or branch point frequency (B). (A) The mean 
vessel area of all rescue clones was signifi cantly different from WT and 
 fl t-1  � / �    mutant clones ( fl t-1  � / �    vs. sFlt and mFlt, P  ≤  0.0005; WT vs. sFlt and 
mFlt, P  ≤  0.02) but did not differ between sFlt-1 and mFlt-1 rescue clones 
(sFlt vs. mFlt, P = 0.86). (B) The mean branch points/millimeter vessel length 
was signifi cantly different between sFlt-1 and mFlt-1 rescue clones (sFlt vs. 
mFlt, **, P  ≤  0.03). Branch points/millimeter vessel length was not signifi -
cantly different between  fl t-1  � / �    mutant and mFlt clones ( fl t-1  � / �    vs. mFlt, 
P = 0.97; WT vs. mFlt, P  ≤  0.01). Branch points/millimeter vessel length 
was signifi cantly different between  fl t-1  � / �    mutant and sFlt isoform clones 
( fl t-1  � / �    vs. sFlt, P  ≤  0.01; WT vs. sFlt, P = 0.16). Error bars represent SEM.   
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 However, visual examination of the pFlk/total Flk double-

stained vessels in the different  fl t-1  genetic backgrounds sug-

gested that the pFlk staining patterns differed ( Fig. 7 A ). In a given 

vessel that was Flk-1 positive, WT vessels showed a mosaic pat-

tern of pFlk staining, with some cells showing a relatively strong 

pFlk signal relative to other cells in the same vessel ( Fig. 7 A , a – d). 

In contrast,  fl t-1  � / �    mutant vessels had more uniform pFlk-1 

staining along a given Flk-1 – positive vessel ( Fig. 7 A , e – h). The 

 ROSA26  locus – targeted sFlt-1 – rescued vessels showed a similar 

mosaic pattern of pFlk staining as seen in the WT vessels, whereas 

the mFlt-1 – rescued vessels resembled the  fl t-1  � / �    mutant vessels 

in having a more homogeneous pattern of pFlk staining ( Fig. 7 A , 

i – p). To quantify these results, double-stained pFlk/total Flk-

positive endothelial cells in vessels were analyzed using imaging 

software to determine individual ratios of pFlk to total Flk signal 

( Fig. 7 C ). The distribution of ratios was very similar in WT and 

sFlt-1 – rescued vessels. For example, only 8.0% (2/25) of WT and 

8.3% (2/24) of sFltR18 endothelial cells had pFlk/total Flk ratios 

between 0.2 and 0.3. In contrast,  fl t-1  � / �    mutant vessels and 

mFlt-1 – rescued vessels had a different distribution of ratios. In 

these genetic backgrounds, 48% (12/25) of  fl t-1  � / �    mutant and 

33% (7/21) of mFltR23 endothelial cells had pFlk/total Flk ratios 

between 0.2 and 0.3. These fi ndings suggest that the mosaic dis-

tribution of Flk-1 signaling in endothelial cells is important for 

proper vascular morphogenesis and that the sFlt-1 isoform but not 

the mFlt-1 isoform rescues this aspect of VEGF signaling. 

rescue clones had values that were largely intermediate between 

the two controls ( Fig. 7 B ). Neither analysis showed consistent 

differences between the sFlt-1 – rescued vessels and the mFlt-1 –

 rescued vessels. 

 Figure 5.     ROSA26 -targeted Flt-1 isoform transgenes partially rescue the 
endothelial cell mitotic index.  (A – F) Day 7 differentiated cultures were fi xed 
and stained for PECAM-1 (green), the mitotic marker antiphosphohistone H3 
(red), and the nuclear dye DRAQ 5 (blue). (G) Representative confocal images 
were scored by counting the PECAM-positive nuclei and the percentage that 
reacted with the phosphohistone antibody to calculate the endothelial mitotic 
index. Error bars represent SEM.  �  2  analysis showed that the WT endothelial 
mitotic index was signifi cantly different from  fl t-1  � / �    mutants ( �  2  = 15.1; P  ≤  
0.0001), and each of the Flt-1 isoform rescue clones differed from  fl t-1  � / �    mu-
tants (sFltR1:  �  2  = 12.2; P  ≤  0.0005; sFltR18:  �  2  =7.6; P  ≤  0.005; mFltR23: 
 �  2  = 7.5; P  ≤  0.008; mFltR25:  �  2  = 13.0; P  ≤  0.0003). Bar, 50  μ m.   

 Figure 6.     ROSA26 -targeted Flt-1 isoform transgenes partially rescue the 
ratio of pFlk to total Flk-1.  Day 8 differentiated cultures were processed 
for Western blot analysis with antibodies to total Flk-1 and pFlk (Tyr-
1173/1175). (A, top) The signal from hybridization with pFlk antibody. 
(bottom) Hybridization with a total Flk-1 antibody. All rescue clones tested 
partially rescued the increased pFlk signal seen in the  fl t-1  � / �    mutant cul-
tures (compare lane 2 with lanes 3 – 6). (B) Quantitation of the normalized 
signals from a representative experiment.   
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pression varied quite dramatically in areas of  fl t-1  � / �    vessels, with 

some cells having strong staining relative to nearby cells with little 

to no staining ( Fig. 8, A – H ). To verify that expression differences 

also existed in a nonmutant background, we examined phenotypi-

cally normal  fl t-1 +/ �    vessels and found evidence of heterogeneity in 

 To begin to determine how sFlt-1 expression leads to hetero-

geneity of the pFlk signal, we examined reporter gene expression 

from the  fl t-1  locus in developing vessels using readout of the  lacZ  

gene inserted into the  fl t-1  locus in  fl t-1 +/ �    and  fl t-1  � / �    ES cell – 

derived vessels ( Fig. 8 ). The levels of  � -galactosidase reporter ex-

 Figure 7.     ROSA26 -targeted sFlt-1 isoform transgene preferentially rescues the mosaic endothelial expression of pFlk (Tyr-1173).  Day 8 differentiated cultures 
were fi xed and stained with antibodies to total Flk-1 and pFlk (Tyr-1173/1175). (A) ES-derived vessels were visualized by staining for pFlk in green (a, e, I, and m), 
total Flk in red (b, f, j, and n), and DRAQ 5 in blue to visualize nuclei (c, g, k, and o). In a – c, e – g, i – k, and m-o, red asterisks denote endothelial cells with 
moderate to high levels of pFlk, and yellow asterisks denote endothelial cells with none to low levels of pFlk. Note that pFlk-positive endothelial cells are mosaic 
in WT (a – d), and  fl t-1  � / �    endothelial cells have more uniform high levels of pFlk (e – h). Expression of the sFlt-1 transgene (i – l) recreates the heterogeneous pat-
tern of pFlk vessel staining, whereas expression of the mFlt-1 transgene (m – p) does not lead to heterogeneity of staining. (B) Stained cultures were visualized 
for total Flk, and the same cells were scored as positive or negative for pFlk. Percentages of a representative experiment are shown on the y axis. (C) Individual 
endothelial cells were outlined and analyzed for the ratio of pFlk/total Flk using imaging software. The numbers were graphed in order of descending ratios 
for each genotype. In each graph, the darker areas show the number of cells that had pFlk/total Flk ratios between 0.2 and 0.3. Bar, 10  μ m.   
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uble and membrane-localized Flt-1 isoform transgenes rescue 

endothelial proliferation to equivalent levels, but they affect 

branching morphogenesis in different ways. The soluble Flt-1 

isoform transgene but not the membrane-tethered Flt-1 isoform 

transgene rescues vessel branching morphogenesis, and the dif-

ferent branching rescue phenotypes correlate with different pat-

terns of Flk-1 activation in developing vessels. These fi ndings 

suggest that the ability of sFlt-1 to bind and sequester VEGF-A at 

a distance from the endothelial cell surface is important for proper 

vessel morphogenesis, and, thus, endothelial cells of developing 

vessels provide critical input for their own morphogenesis. 

reporter gene expression levels among nearby endothelial cells in 

developing vessels ( Fig. 8, I – P ). These fi ndings suggest that Flt-1 

RNA is expressed heterogeneously from the  fl t-1  locus and that 

initial differences in  fl t-1  locus expression are differentially ampli-

fi ed by sFlt-1 protein over mFlt-1 protein, leading to the observed 

heterogeneity of pFlk staining seen in the sFlt-1 – rescued vessels. 

 Discussion 
 Our results show that two Flt-1 isoforms produced by endothelial 

cells have differential effects on developing vessels. Both the sol-

 Figure 8.    Expression of  � -galactosidase from the  fl t-1  locus reveals heterogenous endothelial cell expression in developing vessels.  Day 8 differentiated 
cultures were fi xed and stained with antibodies to  � -galactosidase and PECAM-1. (A – H)  fl t-1  � / �    mutant vessels. (I – P)  fl t-1 +/ �    heterozygous (phenotypically 
normal) vessels. ES-derived vessels were visualized by staining for  � -galactosidase in red (A, E, I, and M), PECAM-1 in green (B, F, J, and N), and DRAQ 5 
in blue to visualize nuclei (C, G, K, and O). In A, E, I, and M, red arrows denote endothelial cells with moderate to high levels of  � -galactosidase, and red 
arrowheads denote endothelial cells with none to low levels of  � -galactosidase. All panels are z-stack compilations of 12- μ m thickness to avoid sampling 
heterogeneity, with the exception of K and O, which are single confocal images from the stack. Bars, 10  μ m.   
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 How does the soluble form of the Flt-1 receptor impact 

vessel morphogenesis? The three major VEGF-A isoforms are 

hypothesized to have different spatial distributions in the extra-

cellular matrix that are important in regulating vessel morpho-

genesis, perhaps by formation of a gradient. In support of this 

model, mice expressing either only VEGF-A 120 , which lacks a 

heparin-binding domain, or VEGF-A 188 , with multiple heparin-

binding domains, have retinas with perturbed migration of vas-

cular tip cell fi lopodia and aberrant vessel morphogenesis 

( Ruhrberg et al., 2002 ;  Gerhardt et al., 2003 ). sFlt-1 contains a 

heparin-binding domain ( Park and Lee, 1999 ), and it also binds 

the extracellular matrix upon release from the endothelial cell 

in addition to binding and sequestering the VEGF-A ligand 

( Orecchia et al., 2003 ). Thus, secreted Flt-1 may spread uni-

formly from the endothelial cell and, in a quantitative fashion, 

regulate the presentation of VEGF-A that is already established. 

In other developmental contexts, cells respond differentially 

to gradients of the same morphogen in specifi c concentration 

ranges, so the interaction between VEGF-A and sFlt-1, even if 

quantitative, could change the morphogenetic response of the 

endothelial cell to VEGF-A (for review see  Ashe and Briscoe, 

2006 ). Alternatively, sFlt-1 might establish a countergradient or 

some other confi guration that modulates VEGF-A presentation 

to endothelial cells qualitatively as well. We favor the latter 

model because it is consistent with the differences in  fl t-1  locus 

expression and distribution of Flk-1 activation that we docu-

mented in developing vessels ( Fig. 9 ). In either scenario, the 

ability of sFlt-1 to move away from the endothelial cell after 

secretion is critical to its mechanism of action. 

 Filopodia form and extend from growing vascular cells 

into the extracellular matrix. Filopodia are involved in sensing 

the environment in other systems, such as guidance of the neuronal 

growth cone (for review see  Koleske, 2003 ). Analysis of retinal 

vessels indicates that endothelial tip cells differ from neigh-

boring endothelial stalk cells in the number of fi lopodia and ex-

pression of marker genes, implicating fi lopodia as transducers of 

positional information ( Gerhardt et al., 2003 ). Our data support 

and extend this model by revealing a required role for sFlt-1 in 

providing positional information. We found that Flk-1 activa-

tion, as measured by the phosphorylation of Tyr-1173, is not nor-

mally uniform in developing vessels, but it exhibits a mosaic 

pattern. In many cases, small groups of endothelial cells had 

higher levels of pFlk staining than neighboring endothelial cells, 

suggesting that these cells experience higher levels of Flk-1 acti-

vation. In contrast,  fl t-1  � / �    mutant vessels had both higher levels 

and a more homogeneous distribution of pFlk staining, suggest-

ing that spatial information required for different levels of Flk-1 

activation in different endothelial cells is missing in the  fl t-1  � / �    
mutant genetic background. This implies that Flt-1 provides that 

spatial information, at least in part. We found that a  lacZ  reporter 

gene inserted into the  fl t-1  locus is expressed at different levels 

among endothelial cells of developing vessels. This fi nding 

strongly suggests that endogenous Flt-1 RNA is also expressed 

heterogeneously in developing vessels, and it provides a starting 

point for a model of how heterogeneity of Flt-1 expression may 

lead to a mosaic pFlk signal ( Fig. 9 ). However, the ability of 

sFlt-1 but not mFlt-1 to rescue branching morphogenesis and the 

 Previously, the  fl t-1  genomic locus was modifi ed in vivo 

to a locus that generated both sFlt-1 and mFlt-1 without the cyto-

plasmic domain ( Hiratsuka et al., 1998 ). This nonsignaling 

locus was compatible with embryonic vascular development, 

which is consistent with our data, but the role of individual Flt-1 

isoforms was not tested. Recently, the  fl t-1  locus was modifi ed 

in vivo to a locus that generated only the sFlt-1 isoform ( Hiratsuka 

et al., 2005 ). The resulting embryos were viable on certain 

genetic backgrounds and partially viable on others, suggesting 

that sFlt-1 is suffi cient to promote proper vascular development 

in vivo in the appropriate genetic background. It is compelling 

that both genetic manipulation of the endogenous  fl t-1  locus and 

rescue via transgene expression of the different Flt-1 isoforms 

yield evidence that sFlt-1 has a critical role in vascular develop-

ment. Our data provide the fi rst direct comparison of the ability 

of the different Flt-1 isoforms to rescue specifi c aspects of vas-

cular development, and we show here that vessel branching is 

uniquely sensitive to the soluble isoform of the Flt-1 receptor. 

 Targeting of each Flt-1 isoform transgene independently 

to the  ROSA26  locus also allowed us to separate the effects of 

sFlt-1 and mFlt-1 on specifi c parameters of vessel development. 

Our analysis revealed that sFlt-1 – expressing clones were able to 

rescue vessel branching to signifi cant levels, whereas the mFlt-1 

clones did not rescue vessel branching. In contrast, both Flt-1 

isoform transgenes rescued vessel area, endothelial cell num-

bers, and the endothelial mitotic index to equivalent levels. 

These fi ndings suggest that differences between the two Flt-1 

isoforms are not relevant to the ability of Flt-1 to rescue endo-

thelial proliferation, but they are critical to the role of sFlt-1 in 

vessel branching morphogenesis. The major differences be-

tween the Flt-1 isoforms are that the soluble isoform cannot sig-

nal, but it can diffuse away from the endothelial cell and into the 

matrix ( Orecchia et al., 2003 ), whereas the membrane-tethered 

isoform cannot diffuse but can theoretically signal. However, 

our preliminary data show that mFlt-1 deleted for the cytoplas-

mic signaling domain has the same rescue profi le as intact mFlt-1 

(unpublished data), as expected from the fi nding that deleted 

mFlt-1 can support embryonic vascular development ( Hiratsuka 

et al., 1998 ). Thus, the differences in the ability to rescue vascu-

lar development between the two Flt-1 isoforms reside primar-

ily in the putative spatial location of the different isoforms. Flt-1 

can form heterodimers with Flk-1, although these interactions 

have been diffi cult to analyze with receptors at endogenous 

levels ( Autiero et al., 2003 ;  Neagoe et al., 2005 ). However, if 

heterodimer formation is relevant during vascular development, 

the mFlt-1 isoform would presumably have an advantage in 

forming heterodimers over sFlt-1 because it is membrane local-

ized near Flk-1; therefore, this mechanism is unlikely to account 

for the increased effi ciency of sFlt-1 in the rescue of vessel 

branching morphogenesis developmentally. Thus, the most likely 

model is that during vascular development, both Flt-1 isoforms 

act as ligand sinks to sequester VEGF-A, and this property is 

suffi cient to regulate the amplitude of the VEGF signal and res-

cue endothelial proliferation independent of spatial context. 

However, the unique ability of sFlt-1 to leave the cell surface 

provides additional spatial regulation of VEGF signaling and 

rescues branching morphogenesis. 
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(VEGFR-1) RNA was down-regulated with the loss of Notch-

Delta signaling in  Dll4 +/ �    retinas, suggesting that under normal 

conditions, Notch-Delta signaling up-regulates Flt-1, and this 

regulation may contribute to the negative regulation of tip cell 

formation and sprouting mediated by Notch-Delta. In this sce-

nario, it is provocative to speculate that perhaps the spatial orga-

nization of Notch signaling infl uences spatial VEGF signaling 

or vice versa. 

 Recently, the importance of the Flt-1 receptor in hemato-

poietic stem and progenitor cell function has been established. 

Both homing of hematopoietic progenitors and their ability to set 

up a niche for metastatic tumor cells in distant organs require 

Flt-1, and these functions are likely mediated via the signaling 

properties of the Flt-1 receptor ( Hattori et al., 2002 ;  Kaplan et al., 

2005 ). However, it has been diffi cult to establish a physiological 

role for the soluble form of the Flt-1 receptor. It is implicated 

in the pathology of preeclampsia in pregnant women because 

sFlt-1 serum levels are elevated in women with the condition, 

but its exact role in this placental disease is not well understood 

(for review see  Maynard et al., 2005 ). A recent study in the eye 

showed that avascularity of the cornea, which allows for proper 

vision, results from the expression of soluble Flt-1 that binds 

VEGF-A protein ( Ambati et al., 2006 ). Our work shows that 

mosaic pattern of Flk-1 activation in sFlt-rescued  fl t-1  � / �    mutant 

vessels indicates that only sFlt-1 critically regulates VEGF-A 

signaling that leads to proper vessel morphogenesis. We suggest 

that both sFlt-1 and mFlt-1 are expressed heterogeneously in 

developing vessels but that the impact of heterogeneous sFlt-1 

expression is amplifi ed by its ability to leave the cell surface and 

affect VEGF availability to nearby cells ( Fig. 9, A and D ). In con-

trast, the ability of mFlt-1 to induce heterogeneous Flk signaling 

is predicted to be cell autonomous and, thus, local and modest in 

comparison to the effects of sFlt-1 ( Fig. 9 C ). 

 Although it is not completely clear how the discontinui-

ties of Flk-1 signaling that are formed as a result of sFlt-1 ex-

pression are achieved, it is interesting that a similar pattern of 

mosaic activation has recently been reported for the Notch sig-

naling pathway in developing vessels ( Hellstrom et al., 2007 ; 

 Hofmann and Luisa Iruela-Arispe, 2007 ). Expression of the 

Notch ligands Dll-4 (Deltalike 4) and Jagged were found in a 

mosaic pattern. The VEGF-A pathway appears to function both 

upstream and downstream of the Notch pathway in endothelial 

cells because VEGF signaling was required for Dll4 expression 

in tumors, and VEGF receptor expression was modulated in 

retinas heterozygous for Dll4 ( Noguera-Troise et al., 2006 ; 

 Suchting et al., 2007 ). Interestingly, in the latter study, Flt-1 

 Figure 9.    Model proposing a mechanism for differential Flt-1 isoform activity in Flk signaling and branching morphogenesis.  We propose a model in 
which Flt-1 secreted from endothelial cells modulates a VEGF-A gradient (greenish blue) to affect ligand availability based on the heterogenous expression 
of both Flt-1 isoforms in developing vessels. (A) In WT vessels, both mFlt-1 and sFlt-1 act as ligand sinks to modulate the amplitude of the VEGF signal to 
endothelial cells. The ability of sFlt-1 to be secreted leads to the modulation of pFlk signaling in neighboring cells as well. (B) In the absence of Flt-1, the 
VEGF-A gradient is not modulated either quantitatively or qualitatively, which leads to excess and more uniform pFlk signaling and aberrant proliferation 
and branching. (C) Expression of an mFlt-1 transgene reduces overall levels of pFlk signaling, but the pattern of pFlk activation remains more homogeneous 
because the mFlt-1 effects are cell autonomous and do not extend to neighboring cells. Thus, proliferation but not branching is rescued. (D) Expression of an 
sFlt-1 transgene also reduces overall levels of Flk-1 activation and modulates signal amplitude to rescue proliferation, but the ability of sFlt-1 to be secreted 
allows it to modulate ligand availability to nearby cells and thus restores more of the heterogeneity of pFlk staining and rescue branching. Green arrows 
denote sFlt-1 protein, green cups denote mFlt-1 protein, and red dots denote pFlk expression.   

 on A
ugust 25, 2014

jcb.rupress.org
D

ow
nloaded from

 
Published May 26, 2008

http://jcb.rupress.org/


JCB • VOLUME 181 • NUMBER 5 • 2008 856 

medium (5% goat serum in PBS) for 1 h at 37 ° C, and all antibodies were 
diluted into staining medium. Cultures were incubated in phospho – VEGFR-2 
(Tyr-1175) rabbit antibody (19A10; Cell Signaling Technology) at 1:200 
overnight at 4 ° C and after PBS washes were incubated with goat anti – 
rabbit IgG conjugated to AlexaFluor488 (Invitrogen) at 1:400 for 2 h at RT. 
Cultures were then incubated with rat anti – mouse Flk-1 antibody (BD Biosci-
ences) at 1:200 overnight at 4 ° C and with goat anti – rat IgG conjugated to 
AlexaFluor568 (Invitrogen) for 1 h at RT and rinsed in PBS. PECAM-stained 
cultures were viewed and photographed with an inverted microscope (IX-50; 
Olympus) outfi tted with epifl uorescence using a 10 ×  NA 0.25 CPlan RT 
objective (Olympus) and a camera (DP71; Olympus) with DP Controller 
version 3.1.1.267 software (Olympus). Flk-1 –  and  � -galactosidase – stained 
cultures were analyzed with a confocal microscope (LSM 5 PASCAL; Carl 
Zeiss, Inc.) using either a 40 ×  NA 1.3 EC Plan-Neofl uor oil objective (Carl 
Zeiss, Inc.) or a 100 ×  NA 1.4 plan-Apochromat oil objective (Carl Zeiss, 
Inc.) at RT using PASCAL Release version 4.2 SP1 acquisition software (Carl 
Zeiss, Inc.). For the  � -galactosidase – stained cultures,  � 10 confocal images 
were acquired through 12  μ m of thickness on the z axis and were combined 
and fl attened. Minor adjustments (brightness and contrast to the whole 
panel) were done using Photoshop CS2 (Adobe). 

 To quantify the vascular area labeled with PECAM antibody, 
PECAM-stained cultures were photographed and analyzed as described 
previously ( Kearney et al., 2002 ). In brief, four to six wells were ana-
lyzed for each genotype. For each well, six to eight images were ac-
quired sequentially for analysis. Percent PECAM area means for each 
well were calculated, and the mean of four wells for each clone was used 
to determine SD values. Branch point analysis was performed on similar 
images from PECAM-stained cultures as described previously ( Kearney 
et al., 2004 ). The mean branch point score from 8 – 12 pictures for each 
clone was used to determine SD values. All values were statistically ana-
lyzed using the two-tailed  t  test. Flk-1 – stained cultures were analyzed by 
counting the number of total Flk-1 – positive cells that also were positive for 
pFlk (Tyr-1173/1175) in representative areas. Quantitative analysis of 
the ratio of pFlk (Tyr-1173/1175) to total Flk staining was performed by 
outlining individual endothelial cells and using MetaMorph software 
(MDS Analytical Technologies) to calculate the ratio. 

 Mitotic index analysis 
 ES cell cultures were differentiated to day 8 and were fi xed and stained with 
antibodies to PECAM-1 and phosphohistone H3 as described previously 
( Kearney et al., 2002 ). Nuclei were visualized with DRAQ 5 used according 
to the manufacturer ’ s protocol (Biostatus Limited). Endothelial mitotic indices 
were determined from confocal images as described previously ( Kearney 
et al., 2002 ). Values were statistically compared using  �  2  analysis. 

 Real-time RT-PCR 
 Real-time RT-PCR was performed as described previously ( Hazarika et al., 
2007 ). In brief, total RNA was extracted from cells using the Ribopure total 
RNA kit (Ambion) according to manufacturer ’ s instructions. After DNase 
digestion, 1  μ g of total RNA was reverse transcribed using the high capac-
ity cDNA Reverse Transcription kit (Applied Biosystems). 50 ng cDNA was 
amplifi ed in a Real-Time PCR System (model 7300; Applied Biosystems) 
using Taqman gene expression assays specifi c for mFlt-1 and sFlt-1 (custom-
designed Taqman assay; forward primer, 5 � -GCAGAGCCAGGAACATATA-
CACA-3 � ; reverse primer, 5 � -GAGATCCGAGAGAAAATGGCCTTT-3 � ; probe, 
CAGTGCTCACCTCTAACG). Each sample was run in duplicate, and the 
expression of target was normalized to endogenous 18S ribosomal RNA. 
Target copies were quantifi ed using the comparative threshold cycle relative 
quantitation method. Total RNA without reverse transcription was used as 
the nontemplate control. 

 Western blot analysis 
 Western blot analysis was performed as described previously with some 
modifi cations ( Roberts et al., 2004 ). In brief, day 8 ES cell cultures were 
lysed into radioimmunoprecipitation assay buffer supplemented with prote-
ase inhibitors. Lysates were centrifuged at 12,000  g  for 10 min, and super-
natants were separated on an 8% SDS-polyacrylamide gel. Gel transfer was 
to a polyvinylidene fl uoride membrane (GE Healthcare) under standard con-
ditions. The phospho-Flk signal was detected by incubation with antiphospho-
VEGFR2 (Tyr-1175; 1:500; Cell Signaling Technology) and HRP-labeled 
anti – mouse secondary antibody (1:5,000; GE Healthcare). Total Flk-1 was 
detected by using rat ant – mouse Flk-1 antibody (1:500; BD Biosciences) and 
HRP-labeled anti – rat secondary antibody (1:5,000; GE Healthcare). After 
detection by enhanced chemiluminescence (GE Healthcare), the results were 
quantifi ed by densitometry using ImageJ (National Institutes of Health). 

 soluble Flt-1 is also critical for proper vessel morphogenesis in 

developing vessels and suggests that sFlt-1 exerts its effects by 

spatial modulation of VEGF-A signaling. Thus, it seems likely 

that sFlt-1 acts as an endogenous modulator of blood vessel for-

mation in numerous physiological contexts. In some cases, its 

expression provides for the complete blockade of VEGF signaling, 

whereas in other contexts, its regulated activity modulates the 

presentation of VEGF-A to the developing vessel. Our increased 

knowledge of the antiangiogenic mechanisms used by nature to 

regulate blood vessel formation should aid in the development of 

rational therapies for vascular diseases. 

 Materials and methods 
 DNA constructs and electroporation 
 The PECAM promoter/intron enhancer was a gift from H. Scott Baldwin 
(Vanderbilt University, Nashville, TN), sFlt-1 cDNA was generated as de-
scribed previously ( Kearney et al., 2004 ), and mFlt-1 cDNA was a gift 
from G. Breier (University of Dresden, Dresden, Germany;  Breier et al., 
1995 ). Targeted insertion of the Flt-1 isoform transgene into the  ROSA26  
genomic locus (targeting vector was a gift from P. Soriano, Fred Hutchinson 
Cancer Research Center, Seattle, WA) was performed using Gateway Mul-
tiSite cloning vectors. The targeting vector pROSA26-1 was modifi ed by 
adding an MluI site into the lone restriction site of the multiple cloning site, 
XbaI. PacI was also added into the KpnI site of pROSA26-1. The resulting 
vector was designated modifi ed pROSA26-1. Modifi ed pROSA26-1 was 
next transformed into a Gateway destination vector. Three Gateway donor 
vectors were subsequently created. The fi rst one, pDONR P2R-P3, was 
made as two different vectors: one containing sFlt-1 cDNA and the other 
containing mFlt-1 cDNA. Each PCR product (sFlt-1 and mFlt-1 transgene) 
was recombined into pDONR P2R-P3 via attB sites to create pDONR 
P2R-P3 – sFlt-1 and pDONR P2R-P3 – mFlt-1. The PECAM promoter/intron 
enhancer was then amplifi ed, and the PCR product was recombined into 
pDONR-221 via attB sites to create pDONR221-PECAM. We next ampli-
fi ed a PGK-hygromycin cassette and recombined the PCR product into 
pDONR P4-P1R via attB sites to create pDONR P4-P1R-PGK-Hygro. Each Flt-1 
isoform-specifi c pDONR-P2R-P3 – Flt-1 vector was combined with pDONR221-
PECAM, pDONR-P4-P1R-PGK-Hygro, and pROSA26-1 �  DEST R4-R3 to 
create pROSA26-1-PECAM – sFlt-1 – Hygro and pROSA26-1-PECAM – mFlt-1 –
 Hygro. 15  μ g of each pROSA26-1-PECAM – Flt-1 – Hygro DNA was lin-
earized with PacI and electroporated into 2  ×  10 7   fl t-1  � / �    ES cells using an 
electroporator (250 V/300  μ F; GenePulser II; Bio-Rad Laboratories). Selection 
was in 200  μ g/ml hygromycin B (Roche) for 12 – 14 d, and drug-resistant 
ES cell colonies were picked and expanded. Correct targeting into the 
 ROSA26  locus was confi rmed via PCR using forward primer 5 � -CCTAAA-
GAAGAGGCTGTGCTTTGG-3 �  and reverse primer 5 � -CCGATGGCTGTG-
TAGAAGTACTC-3 � . 

 Cell culture and in vitro differentiation 
 WT ES cells,  fl t-1  � / �    ES cells (gift of G.-H. Fong, University of Connecticut 
Health Center, Farmington, CT), and  fl t-1  � / �    ES cells containing an sFlt-1 or 
mFlt-1 transgene linked to the PECAM promoter/intron enhancer element in 
the  ROSA26  locus (ROSA;Tg PECAM – sFlt-1 and ROSA;Tg PECAM – mFlt-1) 
were maintained and differentiated as described previously ( Bautch et al., 
1996 ;  Kearney and Bautch, 2003 ). Embryoid bodies were plated onto 
either slide fl asks (Thermo Fisher Scientifi c) or wells of a 24-well tissue cul-
ture dish at day 3 of differentiation and cultured at 37 ° C in 5% CO 2  until 
day 8, when cultures were fi xed and analyzed. 

 Antibody staining and quantitative image analysis 
 Day 8 ES cell cultures were rinsed with PBS and fi xed for 5 min in ice-cold 
methanol-acetone (50:50) for PECAM or  � -galactosidase staining or 4% 
PFA in PBS for Flk-1 staining. For PECAM staining, fi xed cultures were re-
acted with rat anti – mouse PECAM at 1:1,000 (MEC 13.3; BD Biosciences) 
and donkey anti – rat IgG (IgG; H+L) TRITC at 1:100 (Jackson Immuno-
Research Laboratories) or goat anti – rat conjugated to AlexaFluor488 (IgG; 
H+L) at 1:200 (Invitrogen) as described previously ( Bautch et al., 2000 ). 
For  � -galactosidase staining, cultures were reacted with rabbit polyclonal 
anti –  � -galactosidase at 1:300 (Cappel Laboratories) and donkey anti – rabbit 
IgG (IgG; H+L) TRITC at 1:100 (Jackson ImmunoResearch Laboratories). 
For Flk-1 and pFlk (Tyr-1173/1175) staining, cultures were blocked in staining 
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 FACS analysis 
 Day 8 differentiated ES cell cultures were rinsed twice with PBS and disso-
ciated with 0.5 ×  trypsin/EDTA solution (Invitrogen) for 2 – 3 min. After the 
addition of an equal volume of FBS, cells were passed through a cell 
strainer (40  μ m). 1  ×  10 6  cells of each sample were rinsed once with stain-
ing medium (2% FBS in PBS) and incubated with rat anti – mouse CD102 
(ICAM-2) antibody (BD Biosciences) in staining medium for 30 min on ice. 
After two washes with cold staining medium, cells were resuspended in 
staining medium with goat anti – rat IgG conjugated to FITC (Jackson Immuno-
Research Laboratories) and incubated for 30 min on ice. After two washes 
with cold staining medium, the cells were resuspended with 400  μ l of fi xa-
tion buffer (1% PFA in PBS). FACS data were collected with a CyAn ADP 
machine (Dako). 

 Online supplemental material 
 Fig. S1 shows FACS of day 8 ES cell cultures (WT,  fl t-1  mutant, and several 
rescue clones) labeled with the vascular marker ICAM-2. Semiquantitative 
analysis of the proportion of ICAM-2 – positive cells from each culture is 
also shown. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200709114/DC1. 

 We thank H. Scott Baldwin, George Breier, Guo-Hua Fong, and Phil Soriano 
for gifts of plasmids and cells. We thank Bautch laboratory colleagues for 
many useful discussions, Dave Roberts for comments, and Rebecca Rapoport 
for technical support. 

 This work was supported by grants from the National Institutes of 
Health to V.L. Bautch (HL43174 and HL86564) and B.H. Annex (R33 
HL88286) and a predoctoral fellowship from the American Heart Association 
to N.C. Kappas. 

Submitted:  18 September 2007 
Accepted:  30 April 2008 

 References 
   Ambati ,  B.K. ,  M.   Nozaki  ,   N.   Singh ,  A.   Takeda ,  P.D.   Jani ,  T.   Suthar ,  R.J.C.  

 Albuquerque ,  E.   Richter ,  E.   Sakurai ,  M.T.   Newcomb ,  et al .  2006 .  Corneal 
avascularity is due to soluble VEGF receptor-1.    Nature   .   443 : 993  –  997 .   

   Ashe ,  H.L. , and  J.   Briscoe .  2006 .  The interpretation of morphogen gradients.  
  Development   .   133 : 385  –  394 .   

   Autiero ,  M. ,  J.   Waltenberger ,  D.   Communi ,  A.   Kranz ,  L.   Moons ,  D.   Lambrechts , 
 J.   Kroll ,  S.   Plaisance ,  M.   De Mol ,  F.   Bono ,  et al .  2003 .  Role of PlGF in 
the intra- and intermolecular cross talk between the VEGF receptors Flt1 
and Flk1.    Nat. Med.    9 : 936  –  943 .   

   Bautch ,  V.L. ,  W.L.   Stanford ,  R.   Rapoport ,  S.   Russell ,  R.S.   Byrum , and  T.A.  
 Futch .  1996 .  Blood island formation in attached cultures of murine em-
bryonic stem cells.    Dev. Dyn.    205 : 1  –  12 .   

   Bautch ,  V.L. ,  S.D.   Redick ,  A.   Scalia ,  M.   Harmaty ,  P.   Carmeliet , and  R.   Rapoport . 
 2000 .  Characterization of the vasculogenic block in the absence of vascu-
lar endothelial growth factor-A.    Blood   .   95 : 1979  –  1987 .  

   Breier ,  G. ,  M.   Clauss , and  W.   Risau .  1995 .  Coordinate expression of vascu-
lar endothelial growth factor receptor-1 (fl t-1) and its ligand suggests 
a paracrine regulation of murine vascular development.    Dev. Dyn.   
 204 : 228  –  239 .  

   Carmeliet ,  P. ,  V.   Ferreira ,  G.   Breier ,  S.   Pollefeyt ,  L.   Kieckens ,  M.   Gertsenstein , 
 M.   Fahrig ,  A.   Vandenhoeck ,  K.   Harpal ,  C.   Eberhardt ,  et al .  1996 . 
 Abnormal blood vessel development and lethality in embryos lacking a 
single VEGF allele.    Nature   .   380 : 435  –  439 .   

   Coultas ,  L. ,  K.   Chawengsaksophak , and  J.   Rossant .  2005 .  Endothelial cells and 
VEGF in vascular development.    Nature   .   438 : 937  –  945 .   

   Ferrara ,  N. ,  K.   Carver-Moore ,  H.   Chen ,  M.   Dowd ,  L.   Lu ,  K.S.   O ’ Shea ,  L.  
 Powell-Braxton ,  K.J.   Hillan , and  M.W.   Moore .  1996 .  Heterozygous 
embryonic lethality induced by targeted inactivation of the VEGF gene.  
  Nature   .   380 : 439  –  442 .   

   Fong ,  G.H. ,  J.   Rossant ,  M.   Gertsenstein , and  M.L.   Breitman .  1995 .  Role of 
the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular 
endothelium.    Nature   .   376 : 66  –  70 .   

   Gerhardt ,  H. ,  M.   Golding ,  M.   Fruttiger ,  C.   Ruhrberg ,  A.   Lundkvist ,  A.   Abramsson , 
 M.   Jeltsch ,  C.   Mitchell ,  K.   Alitalo ,  D.   Shima , and  C.   Betsholtz .  2003 . 
 VEGF guides angiogenic sprouting utilizing endothelial tip cell fi lopodia.  
  J. Cell Biol.    161 : 1163  –  1177 .   

   Hattori ,  K. ,  B.   Heissig ,  Y.   Wu ,  S.   Dias ,  R.   Tejada ,  B.   Ferris ,  D.J.   Hicklin ,  Z.  
 Zhu ,  P.   Bohlen ,  L.   Witte ,  et al .  2002 .  Placental growth factor reconstitutes 
hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow 
microenvironment.    Nat. Med.    8 : 841  –  849 .  

 on A
ugust 25, 2014

jcb.rupress.org
D

ow
nloaded from

 
Published May 26, 2008

http://jcb.rupress.org/


JCB • VOLUME 181 • NUMBER 5 • 2008 858 

   Shibuya ,  M. , and  L.   Claesson-Welsh .  2006 .  Signal transduction by VEGF recep-
tors in regulation of angiogenesis and lymphangiogenesis.    Exp. Cell Res.   
 312 : 549  –  560 .   

   Soriano ,  P.   1999 .  Generalized lacZ expression with the ROSA26 Cre reporter 
strain.    Nat. Genet.    21 : 70  –  71 .   

   Srinivas ,  S. ,  T.   Watanabe ,  C.   Lin ,  C.   William ,  Y.   Tanabe ,  T.   Jessell , and  F.  
 Costantini .  2001 .  Cre reporter strains produced by targeted insertion of 
EYFP and ECFP into the ROSA26 locus.    BMC Dev. Biol.    1 : 4 .   

   Stalmans ,  I. ,  Y.S.   Ng ,  R.   Rohan ,  M.   Fruttiger ,  A.   Bouche ,  A.   Yuce ,  H.   Fujisawa , 
 B.   Hermans ,  M.   Shani ,  S.   Jansen ,  et al .  2002 .  Arteriolar and venular pat-
terning in retinas of mice selectively expressing VEGF isoforms.    J. Clin. 
Invest.    109 : 327  –  336 .  

   Suchting ,  S. ,  C.   Freitas ,  F.   le Noble ,  R.   Benedito ,  C.   Breant ,  A.   Duarte , and 
 A.   Eichmann .  2007 .  The Notch ligand Delta-like 4 negatively regulates 
endothelial tip cell formation and vessel branching.    Proc. Natl. Acad. Sci. 
USA   .   104 : 3225  –  3230 .   

   Tischer ,  E. ,  R.   Mitchell ,  T.   Hartman ,  M.   Silva ,  D.   Gospodarowicz ,  J.   Fiddes , and 
 J.   Abraham .  1991 .  The human gene for vascular endothelial growth fac-
tor. Multiple protein forms are encoded through alternative exon splicing.  
  J. Biol. Chem.    266 : 11947  –  11954 .           

 on A
ugust 25, 2014

jcb.rupress.org
D

ow
nloaded from

 
Published May 26, 2008

http://jcb.rupress.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile (U.S. Prepress Defaults)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 299
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 299
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


